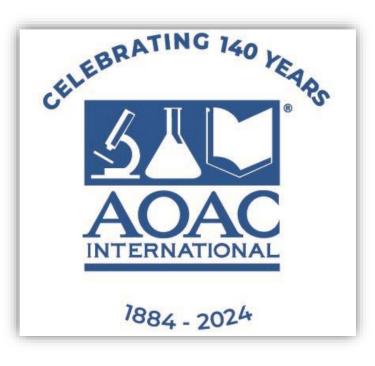


ADVANCING AUTHENTICITY TESTING IN CERTIFIED ORGANIC PRODUCTS

16 JANUARY 2025

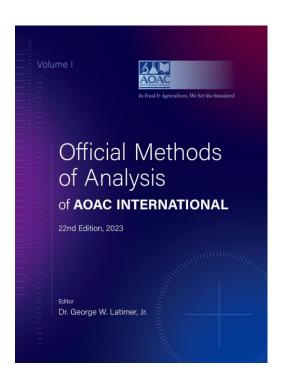
In Food & Agriculture, We Set the Standard


SAC AOAC INTERNATIONAL

WEBINAR AGENDA

- Welcome and Overview Pam Coleman, AOAC INTERNATIONAL
- **Opening & Speaker Introductions** Gwendolyn Wyard, Strengthening Organic Systems (SOS)
- Advancing Authenticity in Organic Products Speakers
- **Discussion and Q&A** Gwendolyn Wyard, Strengthening Organic Systems (SOS)
- Next Steps and Call to Action Pam Coleman, AOAC INTERNATIONAL

AOAC INTERNATIONAL In Food & Agriculture, We Set The Standard



- 1884: The <u>Association of Official Agricultural Chemists</u>
 - Formed with USDA, later part of FDA, became independent in 1970s
- Who we are: an International Membership Association
- What we do: a global trade facilitator
- How we do it: Academic, Industry & Regulatory collaboration on analytical methods
- 2020: The <u>A</u>ssociation of <u>O</u>fficial <u>A</u>nalytical <u>C</u>ollaboration

Need for well-characterized, reliable, reproducible, validated compendial methods that are fit-for-purpose . . . Our Official Methods of Analysis Program

- Analytical target analytes
- Applicable matrices
- Acceptable accuracy or method bias parameters
- Expected method precision results
- Specific terminology

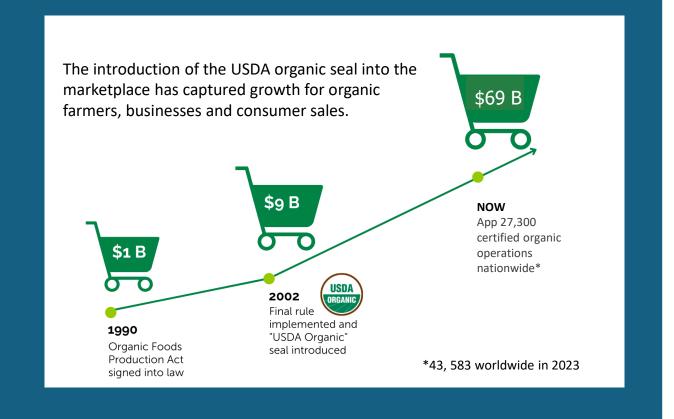
GWENDOLYN WYARD STRENGTHENING ORGANIC SYSTEMS (SOS)

- Founding Partner, Strengthening Organic Systems (SOS), focusing on organic supply chain integrity and fraud prevention.
- 30+ years in the organic industry, including over 12 years as VP of Regulatory and Technical Affairs for the Organic Trade Association.
- Lead developer of the Organic Fraud Prevention Guide, the industry standard for organic supply chain integrity.
- Early career highlights:
 - Organic inspector and Technical Specialist at Oregon Tilth.
 - Served 12 years on the OMRI Board of Directors.
 - North American representative on the GOTS Advisory Board.
 - Holds an advanced degree in Fermentation Science with a minor in Chemistry.
- Current Board Member of Pennsylvania Certified Organic (PCO).

STRENGTHENING ORGANIC SYSTEMS, LLC

Organic fraud prevention and supply chain integrity

Welcome!


Let's set the stage for our program today

Gwendolyn Wyard gwenwyard@organicSOS.com 1 (503) 798 – 3294 OrganicSOS.com

- Organic claims are verified through 3rd party certification by USDA accredited certifiers
- Testing is a critical tool for verifying compliance and detecting fraud
- There is a growing concern around the use of prohibited and/or adulterated fertilizer
- Testing improvements are needed to better address the risk and occurrence of fraud

The success of the organic sector relies on consumer TRUST in the USDA organic seal

organicSOS.com

Johanna Mirenda, USDA National Organic Program

- Serves as an Organic Regulatory Specialist in the Standards Division of the USDA National Organic Program (NOP).
- Develops policies, guidance, and rules to ensure consistent application of USDA organic regulations.
- 14+ years of nonprofit experience in organic certification, advocacy, research, and education.
- Previous roles:
 - Policy Director, Pennsylvania Certified Organic
 - Farm Policy Director, Organic Trade Association
 - Technical Director, Organic Materials Review Institute
- Holds a B.S. in Horticultural Science and an M.S. in Sustainable Food Systems.

Amy Bruch, Cyclone Farms

- 6th-generation farmer and owner of Cyclone Farms in Nebraska.
- Transformed 2,500+ acres into a cutting-edge organic operation growing corn, soybeans, pulses, grains, and oilseeds.
- Focuses on soil balancing, technology, and innovation for nutrientdense crops and farm resiliency.
- 20+ years of global agricultural experience, including sustainable farming in South America and Africa.
- Co-founder of AgriSecure: transitioned 70,000+ acres to organic production.
- Former Senior Sy-stems Engineer at General Mills.
- Chair, USDA National Organic Standards Board; named Organic Farmer of the Year (2021) by the Organic Trade Association.

organicSOS.com

Ehsan Toosi, True Organic Products

- Director of R&D at True Organic Products
- 10+ years in California agriculture, specializing in soil health, nutrient management, and bioprocess innovation.
- Leads research on nutrient recycling and sustainable practices for organic and conventional cropping systems.
- Former Research Scientist at Michigan State University.
- Holds a Ph.D. in Soil Biogeochemistry with a focus on reducing agriculture's environmental footprint by lowering nutrient losses and greenhouse gas emissions.

Eric Jamin, Eurofins Analytics France

- General Manager of the Authenticity Competence Centre at Eurofins Scientific, leading a team of 60 experts in food chemistry, chromatography, authenticity and isotope analysis in Nantes, France.
- Ph.D. in Analytical Chemistry with research on stable isotope analysis of fruit and tobacco.
- 28+ years at Eurofins Scientific, specializing in food authenticity, quality assurance, client support, and R&D.
- Co-author of 50+ scientific publications in food analytical chemistry.

organicSOS.com

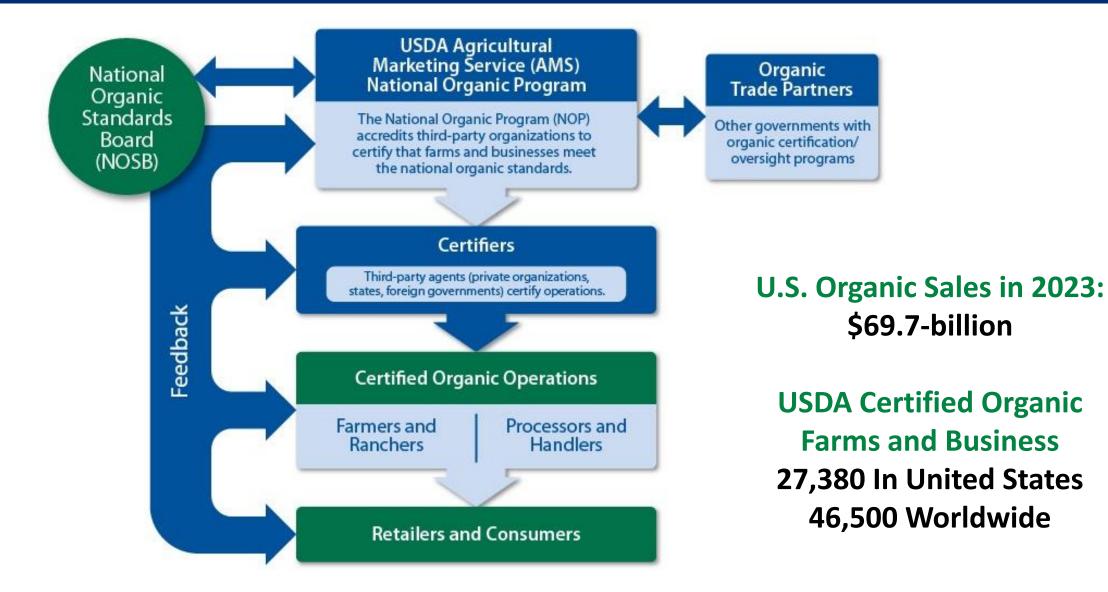
Enjoy, learn, and *please* ask questions!

Agricultural Marketing Service

USDA Organic Regulations: Strengthening Organic Enforcement & Residue Testing

Johanna Mirenda National Organic Program, Standards Division January 16, 2025

What the Organic Seal Represents



USDA Oversees the Organic Seal

- Organic production emphasizes natural processes and ingredients
- No genetic engineering allowed
- Supports soil and water quality and biodiversity
- Emphasizes physical, mechanical, and biological farming methods
- Limited number of approved pesticides vetted through Federal Advisory Board
- Rigorous certification process with residue testing and annual inspections

The Organic Public-Private Partnership

USDA Agricultural Marketing Service | National Organic Program

National Organic Program Goal Areas

Grow and develop the organic sector through transition initiatives and technical assistance

Develop and implement organic standards through open, transparent,

collaborative processes

Protect organic integrity through strong oversight systems

Protect organic integrity through robust enforcement

Effective March 2024, new rules are in place to protect organic integrity and bolster confidence in the organic seal

Increase the number of certified entities to fill gaps

Strengthen recordkeeping and supply chain traceability

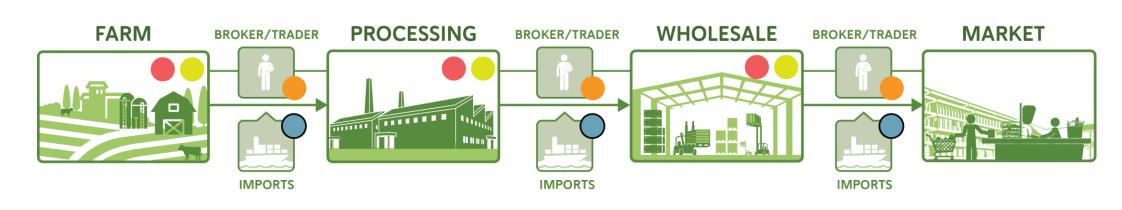
Require use of electronic import certificates

More SOE Resources → <u>www.ams.usda.gov/rules-regulations/strengthening-organic-enforcement</u>

Applicability of Organic Certification

More types of businesses in the organic supply chain must be **certified organic**.

These may include **businesses engaged in buying, selling, or negotiating the sale of organic products,** such as:



ImportersExporters

USDA Agricultural Marketing Service | National Organic Program

Imports to the U.S.: Electronic Import Certificates

Certifiers and operations must use the **electronic NOP Import Certificate** for organic products imported to the U.S.

- The Import Certificate provides traceability to the port of entry and ensures an auditable record trail.
- Certifier of exporter to U.S. generates Import Certificates in NOP's Organic Integrity Database
- Importers enter into CBP import system.

USDA

ORGANIC

Organic supply chains have become increasingly complex, leading to **documented cases of organic fraud and oversight gaps**.

Rule implements provisions from the **2018 Farm Bill** and many **National Organic Standards Board** recommendations.

	EA
4	
	— W

Rule takes a **risk-based approach**: targets higher-risk activities and parts of the supply chain.

Testing for residues of prohibited substances and/or methods is a critical tool for compliance and enforcement.

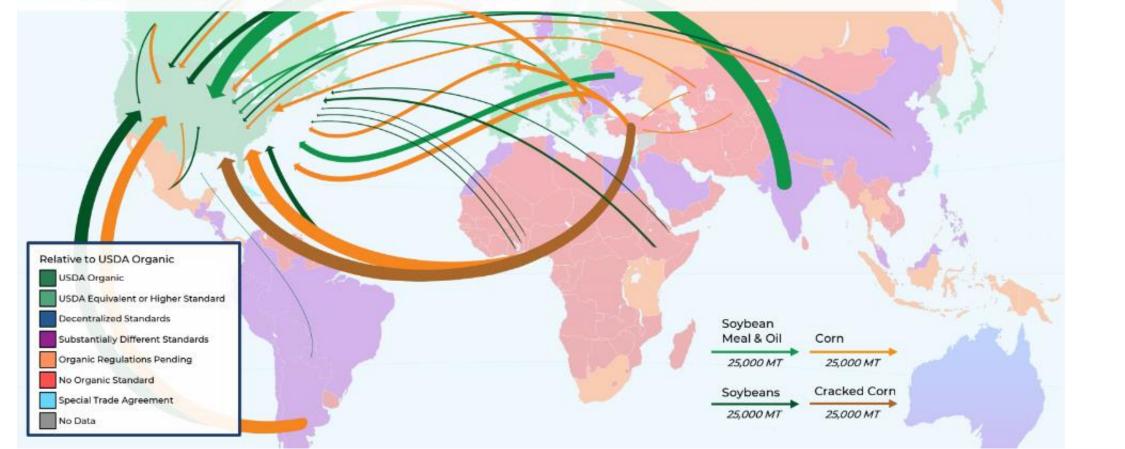
NOP Regulations require residue testing

- ✓ Certifiers must test at least 5% of operations annually
- ✓ Investigations and Risk-Based Supply Chain Audits

NOP Resources on Residue Testing

- USDA Organic
- NOP Regulations (<u>www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205</u>)
 - §§ 205.670-671
- NOP Handbook (<u>www.ams.usda.gov/rules-regulations/organic/handbook</u>)
 - Sampling Procedures for Residue Testing
 - Laboratory Selection Criteria for Pesticide Residue Testing
 - Prohibited Pesticides for Residue Testing
 - Responding to Results from Pesticide Residue Testing
 - Memo To Certifiers about Periodic Residue Testing
- NOP Online Learning Center (<u>www.ams.usda.gov/services/organic-</u> <u>certification/training</u>)
 - NOP-190 Sampling and Testing

Organic Authenticity: In the Lens of Two Different Perspectives


Amy Bruch . Cyclone Farms Inc . National Organic Standards Board

Oversight and Enforcement: Continuous Improvement

- Organic is No Longer a Niche
- Trust and Verify!
 - Phase 1: Strengthening of Organic Enforcement (SOE)
 - Phase 2: Testing

A significant portion of organic imports are coming from regions with materially lower standards.

Organic Authenticity: Farmer Perspective

- Protecting Organic Seal is vital for farmers
 - Economic incentive for fraud is high
 - Market Outlook in Grain Production
 - Even Playing Field
- Accountability
 - Hard Evidence to Prosecute
 - Adequate Testing Procedures

7th Generation

Organic Food Grade - White Corn

Why I choose to Grow Organic

Continue a Family Legacy

- Create a More Resilient Environment for the Next Generation
- Adapt to Market Demands & Global Market Conditions
- Rural Stimulus

Organic Seal Importance

- Legally defined, third-party verified
- Recognized and Respected
- Achieve Consistent High Yielding/Nutritious Products
 - Agronomic Problem Solving vs. Short term Solutions in a Jug

Continue Improvement

- Network with Producers, Industry, & Other Partners
 - Create Opportunities for others

Organic Authenticity: NOSB Perspective

Residue Testing for a Global Supply Chain

- Updating Instruction & Framework
- Highlighting Additional Vulnerabilities
 - Pesticides
 - Solvents
 - Fumigants
 - Inputs
 - Nitrogen
- Innovation
 - Novel Forms
 - Ammonia Extract
 - Other forms of Highly Soluble Nitrogen
- Material Review Assistance
 - Substances of High Solubility

Why focus on Prohibited Synthetic Nitrogen?

- Agronomic Easy Button
 - Circumvents Systematic Approach
 - Agronomics
 - Assists with Monoculture Cropping
 - "Solves" the Fertility Bottleneck
 - Easily Accessible
 - Relatively "Undetectable"
- Market Conditions
 - Bearish Outlook
- Double Whammy
 - Cheaper + Yield Enhancer
- Innovation

Thank You for Your Time Today

- Farming and Agri-business is my Life & Passion
- Organic Agriculture Grows Resiliency in America's Rural Areas
- Please Assist!
 - Continuous Improvement for Authenticity
 Verification

Time to Talk About Organic Integrity Too,

Perspective From the Industry

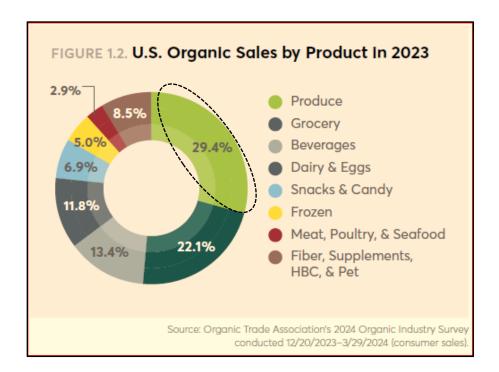
Ehsan Toosi, PhD

Director of R&D

True Organic Products

Outlines

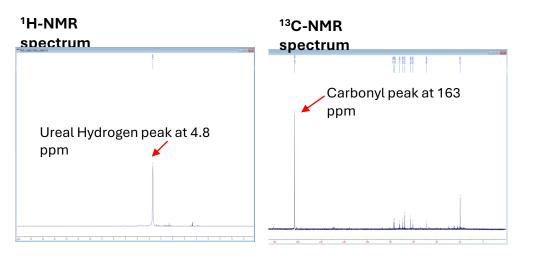
- The organic market and relevance of fraud
- Case studies, fertilizer and fresh produce
- Challenges and gaps



Organic market has been expanding and is predicted to grow

For the organic sector to continue growing, Economically Motivated Fraud must be

addressed



Examples of "suspicious" N fertilizer

Meeting high N concentrations in organic fertilizers is a challenge

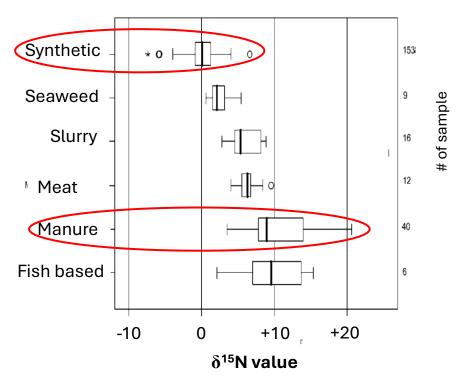
Example I

A liquid fertilizer claiming 13% N appeared to contain 4% Urea, and its $\delta^{15}N$ < -1‰ $\,11$

Collaboration with UC Santa Barbara

Example II

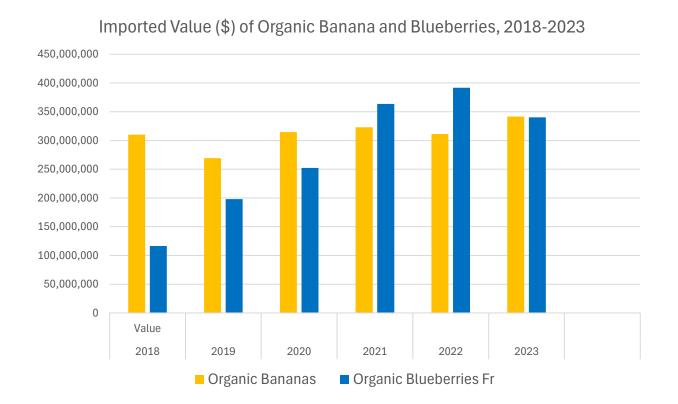
A plant-based N fertilizer was comprised of just ammonium and nitrate!


EPORT DATE SEND TO May 24, 2023 40616 ECEIVED DATE May 19, 2023		Street • Omaha,	bor	atories [®] 8144-3893 • (402) 334-7770	PA	GE 1/1 ISSUE DAT May 24, 202
TRUE ORGANIC PRODUCTSREPORT OF ANALYSISMICHAEL MENESFor: (40616) TRUE ORGANIC PRODUCTS20225 W KAMM AVEFor: (40616) TRUE ORGANIC PRODUCTSHELM CA 93627RD26						
Analysis	Level Found As Received	Units	Reporting Limit	Method	Analyst- Date	Verified- Date
Analysis Sample ID: 26.23.001 Lab Number: 7026	As Received		• •			
Sample ID: 26.23.001 Lab Number: 7028 Nitrogen (total)	As Received 39964 9.92	Units %	Limit	Method WC 055	Date mdh0-2023/05/24	Date eas2-2023/05/24
Sample ID: 26.23.001 Lab Number: 7028 Nitrogen (total) Nitrate-nitrogen	As Received 39964 9.92 5.06	Units %	0.01 0.01	Method WC 055 WC PROC 32	Date mdh0-2023/05/24 Rpk5-2023/05/22	Date eas2-2023/05/24 eas2-2023/05/24
Sample ID: 26.23.001 Lab Number: 7028 Nitrogen (total) Nitrate-nitrogen	As Received 39964 9.92 5.06	Units %	0.01 0.01	Method WC 055 WC PROC 32	Date mdh0-2023/05/24	Date eas2-2023/05/2
Sample ID: 26.23.001 Lab Number: 7028 Nitrogen (total)	As Received 39964 9.92 5.06 4.86 < 0.1	Units %	Limit	Method WC 055	Date mdh0-2023/05/24	Date eas2-2023/05/24 eas2-2023/05/24

N Isotope technique, a powerful tracing tool for differentiating cropping systems

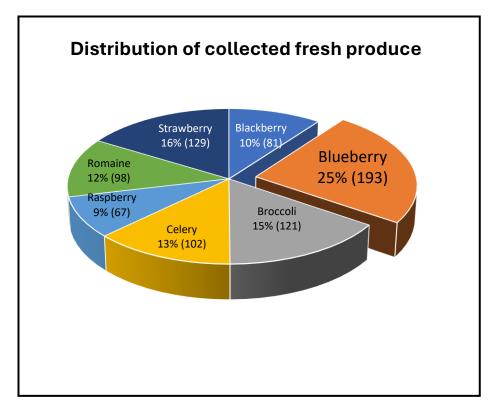
Organic (bio-based) fertilizers and crops have much higher δ^{15} N than synthetic fertilizers and conventionally grown crops. Few exceptions exists.

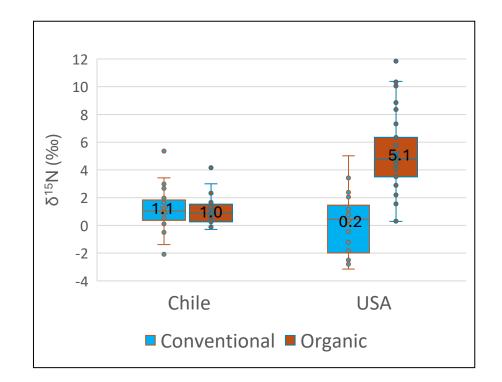
Comparison of δ^{15} N values in fertilizers


- Whiskers indicate max and min values
- Bold lines across the boxes indicate median values
- Boxes indicate 75% of data range for the given sample

Ref.: Isotopes in Environ & Health Studies, 2007, 43: 237–247

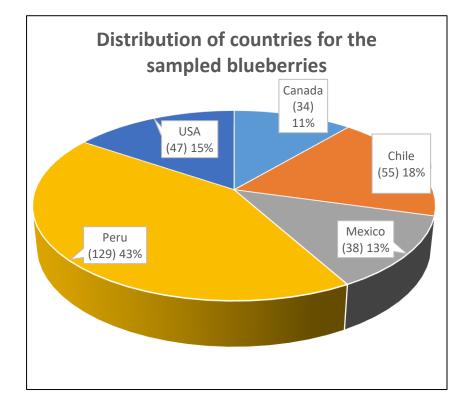
Fresh Produce case studies:

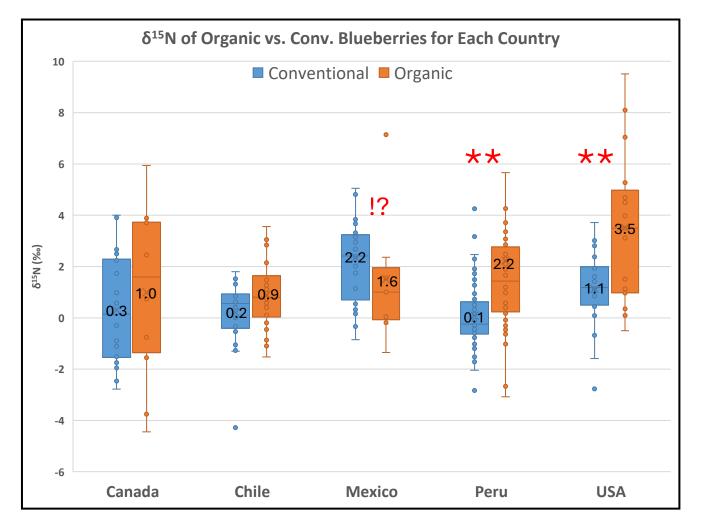

Organic banana and blueberries are among top 5 imported organic ag commodities to the US



Case study I, Fresh Produce

- 791 fresh produce samples were collected
- Crops grown in the US and other countries
- Collaboration with UC Davis

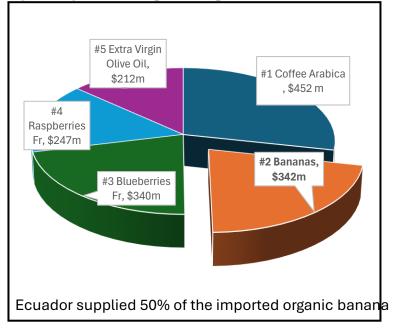

$\delta^{15}N$ values of Conventional and Organic blueberry



Case Study II, Blueberries

- Collected 303 blueberry packages from WA, OR, CA, AZ
- Collaboration of UC Davis-True Organic

Organic blueberries grown in the US showed strongest evidence of N authenticity



Different approach: "What does it Take to Grow Organic?"

Example, Organic Banana imported from Ecuador

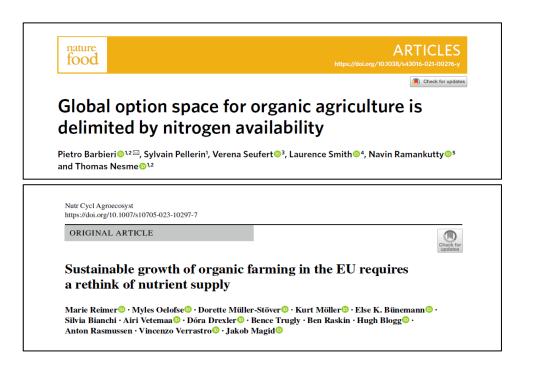
Top 5 Imported Organic Ag Commodities, 2023

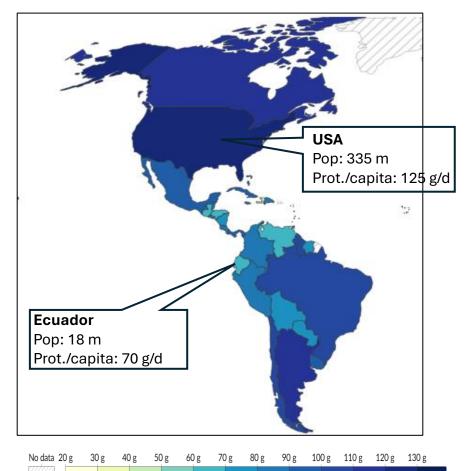
1	2	3	4	5	6
Imported Organic	Banana N	Organic N	Organic N fertilizer, req.	Organic N	Logistics
Banana from	requirement	fertilizer	u	fertilizer, req. to	Logiotioo
	requirement		to grow exported	-	
Ecuador to the US,		scenarios	organic banana to the	grow exported	
2023			US, 2023	organic banana to	
				both EU and US,	
				2023	
ton	Kg/ha		ton	ton	20 t truck
305,206	250	organic fertilizer,	54,000	108,000	5,383
		6%N			
		Composted	92,000	184,000	9,228
		manure, 3.5%N			
		Greenwaste	323,000	646,000	32,297
		compost, 1%N			
A					

Assumption:

Cavendish Banana yield: 45 t/ha Organic Yield factor: 0.7 Export Quality factor: 0.75

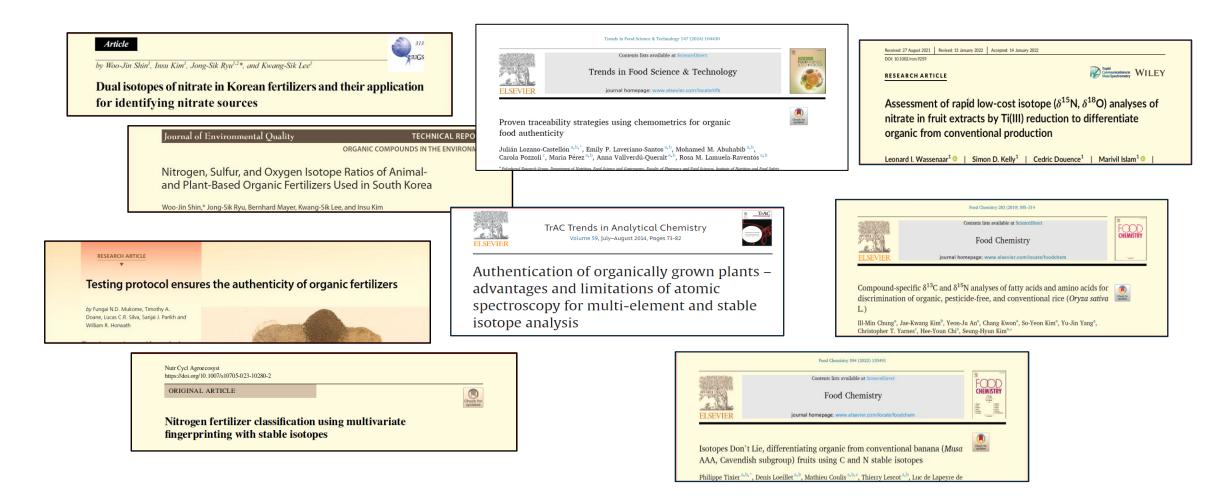
Ref:


Jimenez et al., 2017 Dawson & Vaal, 2023 USDA (https://apps.fas.usda.gov/gats/default.aspx) FAO https://www.fao.org/markets-and-trade/commodities-overview/bananas-tropical-fruits/bananas/en


"What does it Take to Grow Organic?", Nutrient Availability

Rapid growth of organic exports from developing countries to be seen from the technical, and resource availability lenses

• Availability of "organic" nitrogen is a major constraints in expansion of organic



Daily per capita protein supply (gr/day), 2021 (FAO)

Analytical tools are available, method development is in progress, standardization is lacking

Come and join us in our effort to safeguard organic

Challenges and gaps:

- Bringing funding agencies onboard
- Determining threshold of violation for key imported crops
- Combining tracing techniques to add confidence
- Pair pesticide residue and nutrient testing
- Collaborate with Food Forensics community
- Processed food and foods containing multiple ingredients
- Availability of commercial analytical services,
- Developing methodology for nutrients other than N
- Special cases, e.g., N-capturing from digesters.

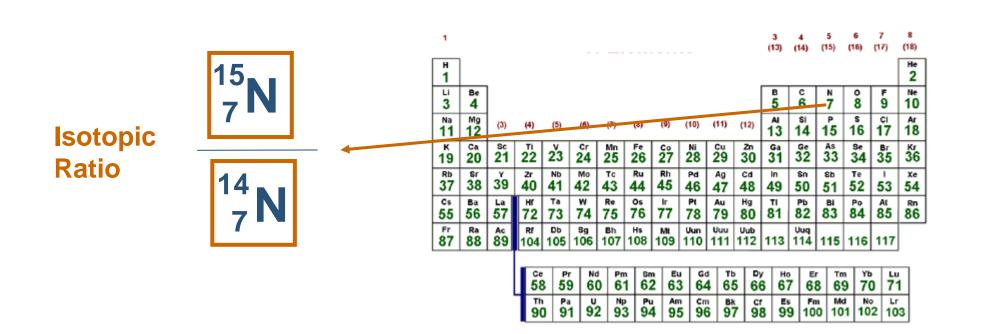
Acknowledgement

Dr. Will Horwath, UC Davis Dr. Xia Zhu-Barker, U of Wisconsin Stable Isotope Lab, UC Davis AOAC International

Overview of organic status testing in EU & current applications

Eric Jamin, PhD Eurofins Authenticity Competence Center, Nantes (France)

Authenticity testing pioneers since 1987



Eurofins Authenticity Competence Center: Our credentials

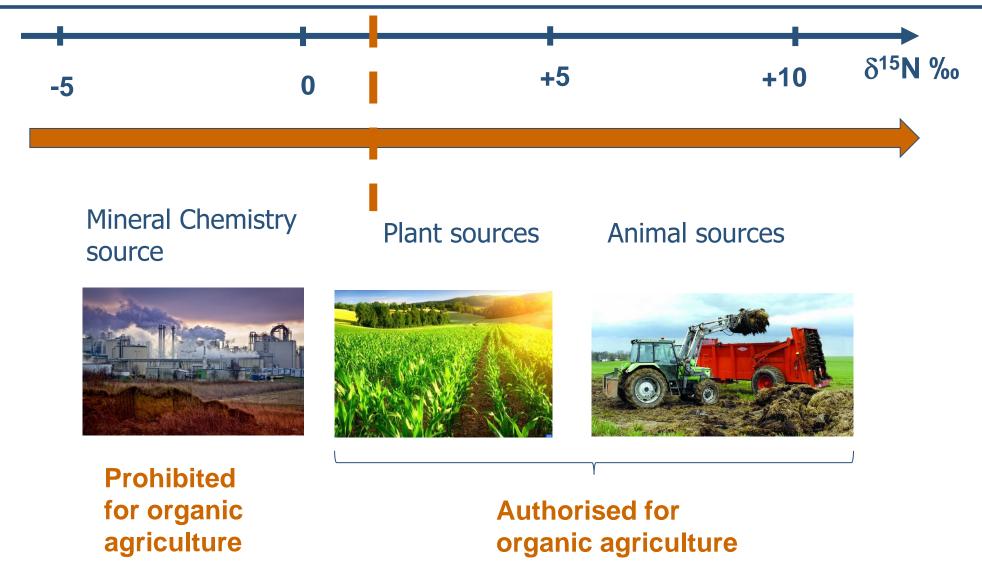
- ISO 17025 acreditation of the laboratory (since 1994), flexible accreditation
- Member of the CEN Technical Committee 460 on food authenticity
- President of the AFNOR V03A commission on food authenticity
- Regular Proficiency Testing organiser for stable isotope testing of food (FIT-PTS), profiling NMR (PRO-PTS) and fruit juice authenticity testing (JUICE-PTS)
- >30 years of experience in organising and exploiting collaborative studies, including AOAC ones (resulting in official methods 995.17, 2000.19, 2004.01, 2006.05)
- Member of permanent technical working groups at OIV, AIJN, IFU, SGF, EU (international industry organisations)
- Coordination and participation in many collaborative research projects aiming at improving authenticity testing

Fertilizers origin control: Use of Nitrogen isotopic deviation δ¹⁵N

Isotopic Deviation $\delta^{15}N$ sample (‰) = (¹⁵N/¹⁴N sample / ¹⁵N/¹⁴N atm -1) *1000

Atm = Nitrogen in the Atmosphere, taken as reference ($\delta^{15}Nair = 0$ ‰)

🔅 eurofins

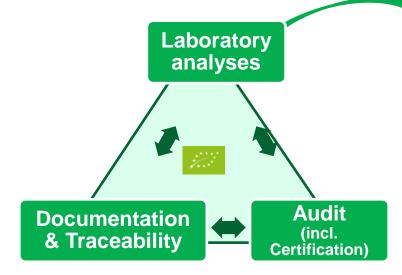

Analysis technique: IRMS = Isotopic Ratio Mass Spectrometry

- Combustion in an elemental analyser
- Separation of isotopic forms in a Mass
 Spectrometer
- Precise isotopic ratio measurement

Fertilizers origin control: Use of Nitrogen isotopic deviation $\delta^{15}N$

Authenticity testing

Is Nitrogen isotopic deviation $\delta^{15}N$ sufficient / applicable in all cases?

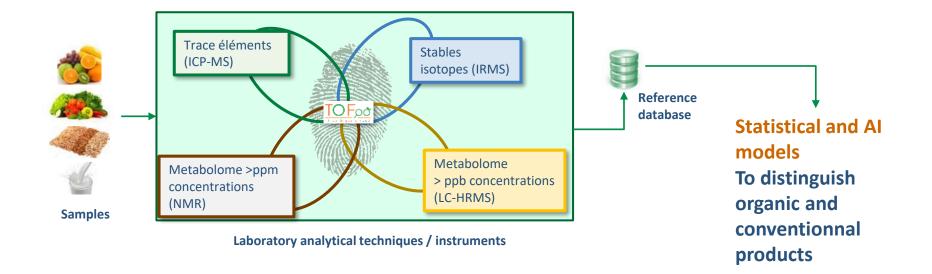

- The answer is no:
- Plants fixing atmospheric nitrogen, such as soy, have ¹⁵N deviations close to 0‰
- The isotopic values of nitrogen in plants are also influenced by nitrogen intake from the soil and metabolic effects, resulting in a wider range of possible values
- Still Nitrogen 15 is a valuable tracer, which should be used in combination with:
 - Traceability audits
 - Other analyses
 - Other stable isotopes (e.g. C13, O18) can provide complementary information

The EU has established a control process

based on organic agriculture regulations

(Regulation UE 2018/848, applicable since 1/1/2022)

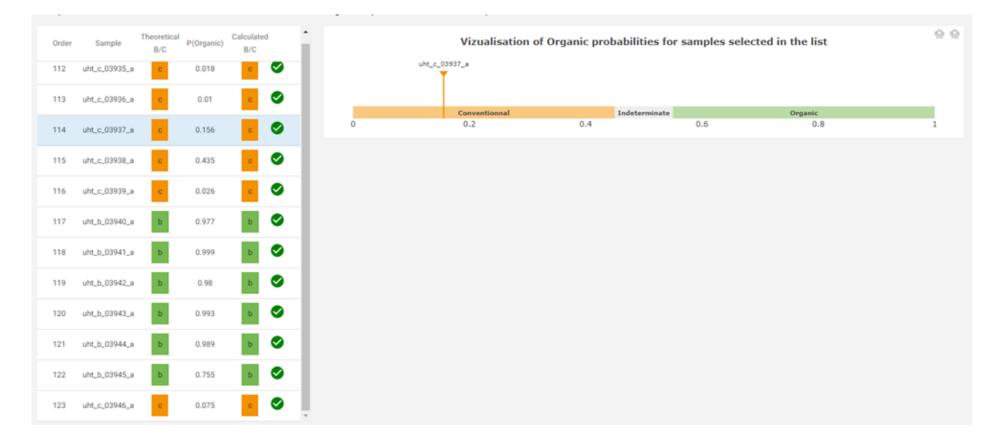
- **č** Current analytical controls are mainly based on pesticide identification and GMO detection.
- **č** Limits of the current approach:
 - Non-specific markers of the organic features
 - Targeted analyses:
 - We find what we are looking for
 - We can only look for a limited number of substances
 - Partial markers neglecting most of the organic agriculture specifications
 - Use of robust varieties
 - Crops rotation
 - Organic matter recycling
 - Animal well-being
 - Treatments based on soft medicines
 - ...

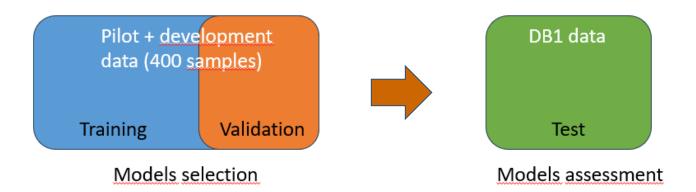


Non-targeted analyses

- Databases containing hundreds of reference samples (50% organic all over France).
- Two analytical techniques chosen for each food product to get robust results.
- Choices of models depending on the classification performance using independent sets of samples.

More than 4000 samples collected over 4 years



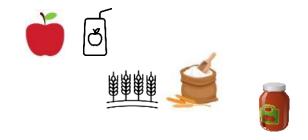

Application of the models developed in TOFoo® to unknown samples

Performance assesment

3 validated models so far, with correct classification rate >95%:

Extension of models to EU origins has also been confirmed

Next steps



Planned releases (2025 – end of projects):

- Q1: Processed apple (purée, juice)
- Q2: Wheat (grains and flour)
- Q3: Processed Tomatoes (purée, paste)

- Methods & data analysis tool shall become commercially available
- Other organic products:
- Would require a suitable database extension (sampling reference samples)
- Other organic products:
 - Would require a suitable database

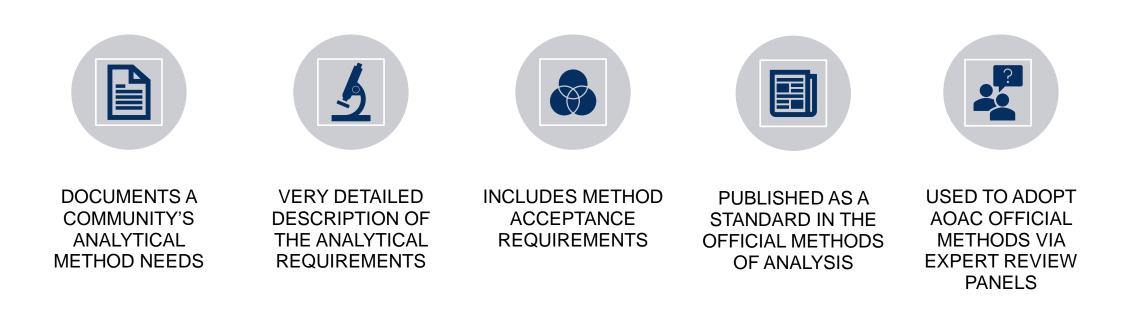
Discover our website: www.tofoo-project.com

Subscribe to our newsletter !

Linkedin page: https://www.linkedin.com/company/eurofins-alimentaire-france/mycompany/

- There is to date no official analytical method for ¹⁵N measurement for fertilisers or fruits / vegetables
- > A CEN method is just published for food&feed products (EN 18054)
- > Organising a collaborative study for fertilisers should be an easy task
- Authenticity testing of organic products also requires suitable databases
- Should this be included in AOAC coordinated work or not?

- Other analytical approaches such as metabolomics (NMR, MS)
- A need for the future?


Thank you, Speakers!

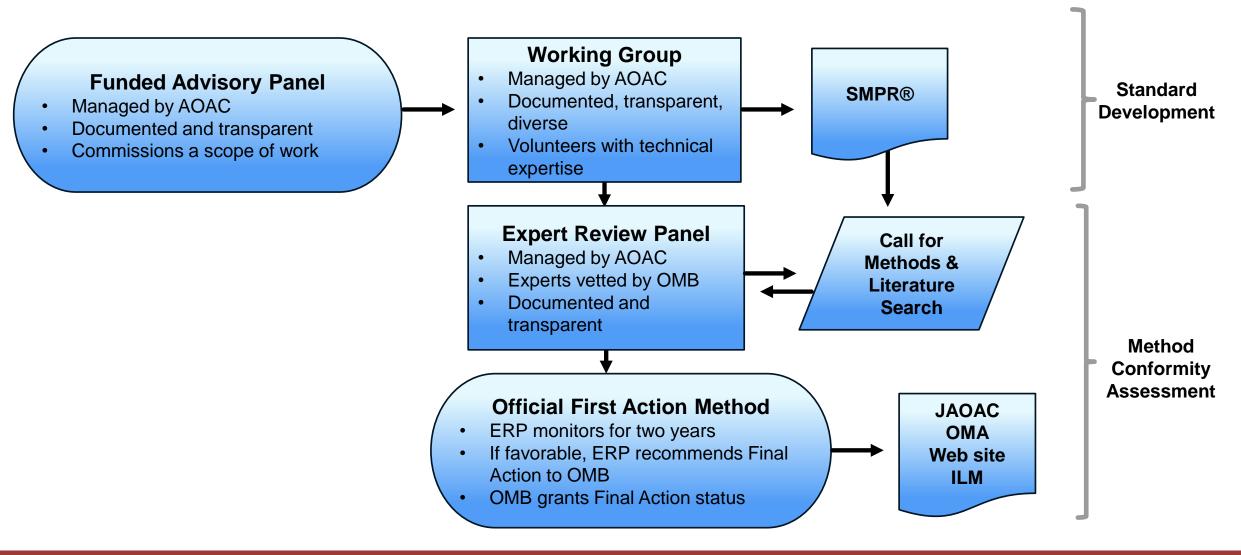
organicSOS.com

WHAT ARE SMPRTM

A SMPR IS NOT A METHOD

In Food & Agriculture, We Set the Standard

THE AOAC PROCESS


The Advisory Panel member organizations fund, prioritizes and commissions the technical Working Group

•

- A diverse Working Group tackles the technical method requirements in the process of creating a Standard Method Performance Requirement DocumentTM
- Scientific Advisors from regulatory agencies or other entities may also provide guidance and input
- Once completed, the standard will undergo a consensus process including stakeholder feedback, public comment and voting
- The finalized standard will be published and will lead to an open Call for Methods

FILLING ANALYTICAL METHOD GAPS

In Food & Agriculture, We Set the Standard

Contact Pam Coleman pcoleman@aoac.org

תודה Dankie Gracias Спасибо Мегсі Takk Köszönjük Terima kasih Grazie Dziękujemy Dekojame Ďakujeme Vielen Dank Paldies Kiitos ^{Täname teid} 谢谢 Thank You Tak 感謝您 **Obrigado** Teşekkür Ederiz ここの のいのののでの、 Teşekkür Ederiz Σας ευχαριστούμε **υουρια** Bedankt Děkujeme vám ありがとうございます Tack

